مجرة - Majarah
طريقك الى العالم

النظرية النسبية العامة

النسبية العامة

بعد وقت قصير من نشر النظرية النسبية الخاصة سنة 1905، بدأ أينشتاين بالتفكير في كيفية دمج الجاذبية في إطاره النسبي الجديد. في سنة 1907، بدأ بتجربة فكرية بسيطة شارك فيها مراقِب في السقوط الحُر، شرع في ما سيكون بحث لمدة ثماني سنوات عن نظرية النسبية العامة. بعد العديد من الطرق الالتفافية والبدايات الخاطئة، بلغت أعماله ذروتها في العرض التقديمي للأكاديمية الروسية للعلوم في نوڤمبر 1915 لما يُعرف الآن باسم معادلات أينشتاين هذه المعادلات تحدد كيف تتأثر هندسة المكان والزمن بأي مادة وإشعاع موجودان، وتُشكل نواة نظرية أينشتاين العامة للنسبية. وفي القرن التاسع عشر كان الرياضياتي برنارد ريمان قد قدَّم الهندسة المسماة الريمانية ، التي قدَّمت الإطار الرياضي الرئيسي الذي وافَق أينشتاين أفكاره الفيزيائية عن الجاذبية معه، ومكَّنه من تطوير النسبية العامة.

معادلات حقل أينشتاين غير خطية ويصعب حلها. اِستَخدم أينشتاين طرق التقريب في وضع التنبؤات الأولية للنظرية. ولكن في بدايات سنة 1916 وجد عالِم الفيزياء الفلكية كارل أول حل دقيق وغير طفيف لمعادلات حقل أينشتاين، هو مترية. وضع هذا الحل الأساس لوصف المراحل النهائية للانهيار التثاقلي، والأشياء المعروفة الآن باسم الثقوب السوداء. وفي نفس العام تم اتخاذ الخطوات الأولى نحو تعميم حل شڤاتسشيلت على الأجرام المشحونة كهربيا، وهو ما أدى في النهاية إلىحل رايسنر، المرتبط الآن الثقوب السوداء وفي سنة 1917 طبّق أينشتاين نظريته على الكون ككل، مُستَهِلًا مجال علم الكون النسبوي، وتماشيًا مع التفكير المعاصر اِفترض أن الكون ثابت، مضيفًا وسيطًا جديدًا إلى معادلات حقله الأصلية - الثابت الكونى - لكي تُطابق هذا الافتراض الرصد. ومع ذلك، فبحلول سنة 1929 أظهر عمل هابل وآخرين أن الكون يتوسع. وقد تم وصف هذا بسهولة من خلال الحلول الكونية المتوسعة التي وجدها الكسندر فريدمان سنة 1922، والتي لا تتطلب ثابتًا فلكيًا. وقد اِستَخدمجورج لومتر هذه الحلول لصياغة النسخة الأولى من نماذج الانفجار العظيم والتي تطور فيها كوننا من حالة مبكرة شديدة الحرارة والكثافة.أعلن أينشتاين فيما بعد أن الثابت الكوني هو أكبر خطأ في حياته.

خلال هذه الفترة، ظلت النسبية العامة مثيرة للفضول بين النظريات الفيزيائية، كانت متفوقة بشكل واضح على الجاذبية نيوتن، كونها متسقة مع النسبية الخاصة وتفسر عدة تأثيرات غير مفسَّرة من قِبل الجاذبية النيوتنية. كان أينشتاين نفسه قد أظهر في سنة 1915 كيف شرحت نظريته التقدم الحضيضي الشاذ لكوكب عطارد دون أي معلمات اعتباطية. وبالمثل، أكدت بعثة استكشافية في سنة 1919 بقيادة أرتر تنبؤ النسبية العامة بانحراف ضوء النجوم بفعل الشمس أثناء الكسوف الكلي للشمس في 29 مايو 1919،وهذا جعل أينشتاين مشهورًا على الفور. ومع ذلك فقد دخلت النظرية التيار الرئيسي للفيزياء النظرية والفلكية فقط مع التطورات بين عامي 1960 و1975، والذي يُعرف الآن بعصر النسبية العامة وبدأ الفيزيائيون يفهمون مفهوم الثقب الأسود، وتحديد الكويزار كواحد من المظاهر الفيزيائية الفلكية لهذه الأجرام وأكدت اختبارات النظام الشمسي الأكثر دقة في أي وقت مضى القوة التنبؤية للنظرية، وأصبح علم الكون النسبوي، كذلك، متوافقًا مع اختبارات الرصد المباشِرة.

على مر السنين، اكتسبت النسبية العامة سمعة كنظرية عن الجمال الاستثنائي. ذكر سابارمنين تشانرسخار أنه على مستويات متعددة تُظهر النسبية العامة ما أطلق عليهفرانسيس بيكون "الغرابة في النسبة"  فهي تجمع بين المفاهيم الأساسية (المكان والزمن مقابل المادة والحركة) والتي كانت تُعتبر سابقًا مستقلة تمامًا. ذكر تشاندراسخار أيضًا أن أدلة أينشتاين الوحيدة في بحثه عن نظرية دقيقة كانت مبدأ التكافؤ واحساسه بأن الوصف الصحيح للجاذبية يجب أن يكون هندسيًا على أساسه، بحيث يكون هناك "عنصر الوحي" في الأسلوب الذي وصل له أينشتاين في نظريته.العناصر الأخرى للجمال المرتبطة بالنظرية العامة للنسبية هي بساطتها وتناظرها وأسلوب دمجها للثبات والتوحيد واتساقها المنطقي المثالي.

معادلات أينشتاين

وبصياغة النسبوية، وهي النسخة الهندسية لتأثيرات الجاذبية، تبقى مسألة مصدر الجاذبية. ففي الجاذبية النيوتنية المصدر هو الكتلة. وفي النسبية الخاصة تصبح الكتلة جزءًا من كمية أكثر عمومية تسمى الأجهاد، الذي يشمل كل من كثافة الطاقة والزخم وكذلك الأجهاد: الضغط والقص وباستخدام مبدأ التكافؤ، يتم تعميم هذا الموتر بسهولة على الزمكان المنحني. وبالاعتماد أكثر على مزيد من التشابه مع الجاذبية النيوتنية الهندسية، من الطبيعي أن نفترض أنمعادلة الحقل للجاذبية ترتبط بهذا الموتر وموتر ريتشى، الذي يصف فئة معينة من تأثيرات المد والجزر: التغير في الحجم لسحابة صغيرة من جسيمات الاختبار التي هي في راحة في البداية، ثم تسقط سقوطًا حرًا. في النسبية الخاصة، يتوافق حفظ الطاقة مع القول بأن موتر زخم الطاقة خالٍ منالتباعد. هذه الصيغة يتم تعميمها أيضًا بسهولة للزمكان المنحني من خلال استبدال المشتقات الجزئية بنظيراتها متعددة الشعب المنحنية،المشتقات المتغايرة التي دُرست في الهندسة التفاضلية. مع هذا الوضع الإضافي؛ وهو التباعد المتغاير لموتر الإجهاد-الزخم، ومن ثم أيًا كان على الجانب الآخر من المعادلة، فهو صفر؛ أبسط مجموعة من المعادلات هي التي تُسمى معادلات (حقل) أينشتاين:

معادلات حقل أينشتاين

على الجانب الأيسر موترأينشتاين، وهو مزيج محدد من موتر ريتشي خالٍ من التباعد والمترية. حيث أن  متناظر، بشكل خاص.

هو سلم الانحناء. موتر ريتشي نفسه مرتبط بعموم موتور انحناء ريمان:

على الجانب الأيمن، هو موتر الاجهاد-الزخم. كل الموترات مكتوبة بترميز فهرسي مختصر. بمطابقة تنبؤ النظرية بالنتائج المرصودة للمدارات الكوكبية، أو بشكل مكافئ، مع ضمان أن حد الجاذبية المنخفض والسرعة المنخفضة هو الميكانيكا النيوتنية، يمكن تثبيت ثابت التناسب كـ κ = 8πG/c4 مع G هو ثابت الجاذبية وc هي سرعة الضوء.عندما لا تكون هناك مادة حاضرة، فإن موتر الطاقة-الزخم يختفي، النتائج هي معادلات أينشتاين الفراغية،

بدائل النسبية العامة

هناك بدائل للنسبية العامة مبنية على نفس الأسس، والتي تشمل قواعد و\أو قيود إضافية، تؤدي إلى معادلات حقل مختلفة. من الأمثلة: نظرية برانز ديك وجاذبية f(R) ونظرية وايتهيد ونظرية أينشتاين-كارتان

التعريف والتطبيقات الأساسية

يحتوي الاستنتاج المبيَّن في القسم السابق على جميع المعلومات اللازمة لتحديد النسبية العامة، ووصف خصائصها الرئيسية، ومعالجة مسألة ذات أهمية حاسمة في الفيزياء، وهي كيف يمكن استخدام النظرية في بناء نموذج.

النسبية العامة هي نظرية مترية  للتجاذب. وتتواجد معادلات أينشتاين في جوهرها، التي تصف العلاقة بين هندسة متعدد الشعب ثلاثي الأبعاد الذي يمثل الزمكان، والأجهاد_ الزخم المحتوى في ذلك الزمكان.الظاهرة التي تعود إلى حركة قوة الجاذبية في الميكانيكا الكلاسيكية (مثل السقوط الحر، والحركة المدارية، ومسارات المركبات الفضائية)، تتوافق مع حركة القصور الذاتي داخل الهندسة المنحنية للزمكان في النسبية العامة؛ لا توجد قوة جذبوية تشوه الأشياء من مساراتها الطبيعية المستقيمة. وبدلًا من ذلك، تتوافق الجاذبية مع التغيُّرات في خصائص المكان والزمن، التي بدورها تُغيِّر أكثر المسارات استقامة ممكنة التي تتبعها الأشياء بشكل طبيعي.الانحناء بدوره يحدث بسبب الإجهاد-الزخم للمادة. وبإعادة الصياغة للنسبوي جون ويلر، الزمكان يخبر المادة كيف تتحرك؛ والمادة تخبر الزمكان كيف ينحني.

في حين أن النسبية العامة تحل محل الامكانات الجذبوية السلمية للفيزياء الكلاسيكية من خلال موتر متناظر من الرتبة الثانية، فإن الأخيرة تتناقص إلى سابقتها في بعض الحالات المحدَّدة. وبالنسبة لحقول الجاذبية الضعيفة والسرعة البطيئة بالنسبة لسرعة الضوء، تتقارب تنبؤات النظرية مع تلك الخاصة بقانون الجاذبية العام لنيوتن.

خلال بنائها باستخدام الموترات، تُظهر النسبية العامة التغاير العام: قوانينها - وقوانين إضافية صيغت في الإطار النسبي العام - تتخذ نفس الشكل في جميع أنظمة الأحداثية  بالإضافة إلى ذلك، لا تحتوي النظرية على أي بنية خلفية هندسية ثابتة، بمعنى أنها مستقلة الخلفية وهي بالتالي تفي بمبدأ النسبية العام الأكثر صرامة، وهو أن قوانين الفيزياء  هي نفسها لجميع المراقِبين. ومحليا، كما في مبدأ التكافؤ، الزمكان هومينكوفسكى، وقوانين الفيزياء تعرض تناظر لورينتز المحلى.

بناء النموذج

ان مفهوم لجوهري لبناء النموذج النسبوي العام هو حل معادلات أينشتاين. بالنظر لكل من معادلات أينشتاين والمعادلات المناسبة لخصائص المادة، حلول كهذه تتكون من مجموعة متعدد الشعب شبه ريمانية (عادةً ما يتم تحديدها من خلال إعطاء المترية في إحداثيات محدَّدة) وحقول المادة المحددة مُعرَّفة في هذا التعدد. المادة والهندسة لا بد أن تُرضِيا معادلات أينشتاين، لذلك على وجه الخصوص، يجب أن يكون موتر-الاجهاد-الزخم خاليًا من التباعد. كما يجب أن ترضي المادة أيضًا بالطبع أي معادلات إضافية تم فرضها على خصائصها. باختصار، حلًا كهذا هو كون نموذجي يرضي قوانين النسبية العامة، وربما قوانين إضافية تحكم أي مادة أيًا كانت قد تكون موجودة.

معادلات أينشتاين هي معادلات تفاضلية جزئية غير خطية، ولهذا يصعب حلها بدقة. ومع ذلك، هناك عدد من الحلول الدقيقة معروفة، على الرغم من أن القليل منها فقط له تطبيقات فيزيائية مباشرة.أفضل الحلول الدقيقة المعروفة، وأيضًا الأكثر إثارة للاهتمام من وجهة نظر الفيزياء، هي حل شقاتسشيلت وحل ريزنر-نوردستروم ومترية كيار، كل منها يتناظر مع نوع معين من الثقوب السوداء في كون فارغ بطريقة مختلفة،وكر وروبرتسون وفريدمان وكون دي سيتر، كل منها يصف كونًا متوسعًا تشمل الحلول الدقيقة ذات الاهتمام النظري الكبير كون جودِل (الذي يفتح الإمكانية المثيرة للاهتمام للسفر عبر الزمن في زمكانات منحنية) وحل تاب-نوت (نموذج لكون متجانس، لكنهمتباين الخواص)، ومكان دي سيتر المضاد (الذي أصبح بارزًا مؤخرًا في سياق ما يسمى بحدسية).

نظرًا لصعوبة إيجاد حلول دقيقة، يتم حل معادلات حقل أينشتاين أيضًا بشكل متكرر من خلال التكامل العددى بواسطة الكمپيوتر، أو من خلال النظر في الاضطرابات الصغيرة للحلول الدقيقة. وفي مجال النسبية العددية، يتم استخدام كمپيوترات قوية لمحاكاة هندسة الزمكان وحل معادلات أينشتاين في المواقف المثيرة للاهتمام مثل تصادم ثقبين أسودين. من حيث المبدأ، هذه الأساليب قد تطبَّق على أي نظام، مع توفير مراجع كافية للكمپيوتر، وقد تعالِج مسائل أساسية مثلا التغريدات . يمكن إيجاد حلول تقريبية أيضًا من خلالنظريات الأضطراب  مثل الجاذبية الخطية  وتعميمها، فيتوسع ما بعد نيوتن ، وكلاهما تم تطويرهما من قِبل أينشتاين. توفر هذه الأخيرة منهجية منظَّمة لحل هندسة الزمكان الذي يحتوي على توزيع للمادة التي تتحرك ببطء مقارنةً مع سرعة الضوء. التوسع يتضمن أيضًا سلسلة من الشروط؛ المصطلحات الأولى تمثل الجاذبية النيوتنية، بينما تمثل المصطلحات اللاحقة تصحيحات أصغر لنظرية نيوتن بسبب النسبية العامة. الامتداد لهذا التوسع هو توسيط شكلية ما بعد النيوتنية، والذي يسمح بإجراء مقارنات كمية بين تنبؤات النسبية العامة والنظريات البديلة.

عواقب نظرية أينشتاين

النسبية العامة لها عدد من العواقب الفيزيائية، بعضها تبعها مباشرةً من البديهيات النظرية، بينما بعضها الآخر أصبح واضحًا فقط في خلال سنوات عديدة من البحوث التي أعقبت نشر أينشتاين الأول.

تمدد الزمن الثقالي وتحوُّل التردد

 

تمثيل تخطيطي للانزياح الأحمر الثقالي لموجة ضوئية تهرب من سطح جسم ضخم.

بافتراض أن مبدأ التكافؤ ينطبق،الجاذبية تؤثر على الزمن. الضوء المُرسَل لأسفل إلى داخل بئرالجاذبية يتحول الى ازرق ، في حين أن الضوء المُرسَل في الاتجاه المعاكس (أي يتسلق خروجًا من بئر الجاذبية)يتحول الى احمر؛ يُعرَف هذان التأثيران مجتمعان باسم تحوُّل التردد الثقالي. وبصورة أكثر عمومية، العمليات القريبة من جسم ضخم تجري ببطء أكثر مقارنةً بالعمليات التي تجري بعيدًا عنه؛ يُعرف هذا التأثير باسم تمدد الزمن الثقالي.

تم قياس الانزياح الأحمر الثقالي في المعملوباستخدام الرصد الفلكي.تم قياس تمدد الزمن الثقالي في حقل الأرض الجذبوي مرات عديدة باستخدام الساعات الذرية. بينما التحقق المستمر تم توفيره من خلال الآثار الجانبية لتشغيل نظام التموضع العالمى (GPS).ويتم توفير الاختبارات في حقول الجاذبية الأكثر قوة من خلال رصد النبضات الثنائية  جميع التجارب تتفق مع النسبية العامة. ومع ذلك، وفي المستوى الحالي من الدقة، هذه النتائج لا يمكنها التمييز بين النسبية العامة والنظريات الأخرى التي يكون فيها مبدأ التكافؤ صحيحًا.

النسبية الخاصة 

وهي النوع الثاني من النسبية التي اكتشفها نيوتن فيعام 1905م حيث ان النسبية الخاصة عبارة عن نظرية فيزيائية لقياس مرجعي وتعد النظرية النسبية الخاصة هي بديل نظرية نيوتن في الزمان والمكان .

 

لما لا تترك تعليق